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Abstract. One objective of the regeneration of genetic 
populations is to maintain at least one copy of each 
allele present in the original population. Genetic diver- 
sity within populations depends on the number and 
frequency of alleles across all loci. The objectives of this 
study on outbreeding crops are: (1) to use probability 
models to determine optimal sample sizes for the re- 
generat ion for a number of alleles at independent loci; 
and (2) to examine theoretical considerations in choos- 
ing core subsets of a collection. If we assume that 
k -  1 alleles occur at an identical low frequency of Po 
and that the k th allele occurs at a frequency of 
1 - [ ( k -  1)po], for loci with two, three, or four alleles, 
each with a Po of 0.05, 89-t10 additional individuals 
are required if at least one allele at each of 10 loci is to 
be retained with a 90% probability; if 100 loci are 
involved, 134-155 individuals are required. For two, 
three, or four alleles, when Po is 0.03 at each of 10 loci, 
the sample size required to include at least one of the 
alleles from each class in each locus is 150-186 individ- 
uals; if 100 loci are involved, 75 additional individuals 
are required. Sample sizes of 160-210 plants are re- 
quired to capture alleles at frequencies of 0.05 or higher 
in each of 150 loci, with a 90-95% probability. For  rare 
alleles widespread throughout the collection, most alle- 
les with frequencies of 0.03 and 0.05 per locus will be 
included in a core subset of 25-100 accessions. 
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Introduction 

Managers of genetic resources strive to maintain allelic 
diversity during regeneration by attempting to retain 
at least one copy of each allele present in the original 
population. Crossa (1989) pointed out that the effec- 
tiveness of regeneration for maintaining the allelic 
diversity is related to proper sampling procedures, 
random genetic drift due to sample size, and optimum 
seed viability. When sample sizes are large, regener- 
at ion is difficult and expensive. Small sample sizes may 
result in the loss of those alleles present at low frequen- 
cies due to random genetic drift. 

Genetic diversity within populations depends on 
the number and frequency of all alleles across all loci, 
plus the genetic structure of the population. Marshall 
and Brown (1975) suggested that the most important 
measure of genetic diversity is the average number of 
alleles per locus. Weir (1990) defined genetic diversity 
at a single locus as one minus the sum of squares of 
allelic frequencies. For outbreeding species, allelic di- 
versity and the proportion of heterozygosity are equiv- 
alent. In contrast, self-pollinating species may have 
much allelic diversity among accessions but few hetero- 
zygous individuals within accessions. 

The concept of a core collection was introduced by 
Frankel and Brown (1984) and Brown (1989a, b) with 
the intent of using the core collection to minimize the 
cost of germ plasm conservation while insuring maxi- 
mum genetic diversity. Later, the authors described 
methods for forming a core subset using information 
on the origin, and agronomic and morphological char- 
acteristics of the accessions. When forming a core 
subset curators must know: (1) the optimal number of 
accessions needed to retain an acceptable proportion 
of alleles present in a given collection, and (2) the 
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method used to select accessions for the core 
subset. 

The objectives of our study on outbreeding crops 
were: (1) to use probability models that incorporate the 
number of alleles at independent loci to determine 
optimal sample sizes for regenerating germ plasm ac- 
cessions; and (2) to assess theoretical problems in se- 
lecting accessions for the core subset. 

Optimal sample sizes for regenerating 
germ plasm accessions 

Consider a random mating population of infinite size 
and in Hardy-Weinberg equilibrium that can be sub- 
divided into many highly homozygous lines. Assume 
that the individuals are diploid and that there are two 
classes of alleles per locus (a 1 and a2); al occurs with 
frequency p~ and a2 with frequency P2 (P2 = 1 - P0. 
Sampling, at random, individuals of n different lines is 
equivalent to drawing, at random, one gamete without 
replacement after another n times from the original 
random mating population. This represents n indepen- 
dent, repeated Bernoulli trials.Therefore, the number 
of lines with a particular allele, in a sample size n, is a 
random variable with a binomial distribution. The 
probability of including x i alleles of class a~ in a 
random sample of size n is 

(:i)p p x 
Then the probability of including in the sample at least 
one allele of class al is 

P = 1 - p~ (2) 

For k (k >2) classes of alleles, al, a2,. . . ,  ak of a 
locus with frequencies of Px, Pz,. . . ,  Pk, the number of 
lines in a sample of size n with a certain number of 
alleles from each allelic class in a sample of size n is a 
random variable with a multinomial distribution. This 
case represents independent, repeated trials that gener- 
alize from Bernoulli trials with two outcomes to trials 
with more than two outcomes. Therefore, the probabil- 
ity of obtaining each allele class x i times in a random 
sample of size n is 

P = In !  I J  ( P ~ ) ~ / ~  h x~ [1 i= 1 l/[._i= I 

k 
(where ~ x i = n) (3) 

i=l 

Thus, the probability that each of the k allele classes 
will be represented at least once in the sample is given 

by 

P(a 1 > 0 . . . . .  a k > 0) 

= 1 - P(ai) - ~. P(aiaj) 
i l<i<j_<k 

k 
+ ~ p(aiajaz ) . . . .  (_  1)k + 1 

l_<i<j<z_<k 

x ~,, P(aiaj . . .ak_l)  (Crossa 1989), 
1 _<i<j<z..._<k- 1 

(4) 

where P(ai), the probability that the allele a i will not 
appear in the sample, is ( 1 -  pi)  n. Crossa (1989) evalu- 
ated this equation for the case of two, three, and four 
alleles at different frequencies, whereas Marshall and 
Brown (1975) evaluated it for two and four alleles. 

For m independent loci, the probability that each of 
k allele classes will be detected at least once in each 
locus in a sample size n is 

f i [ P ( a  > 0 . . . .  , a k > 0)] 
1=1 

= 1 -  P(a i ) -  ~ P(aia j) 
1=1 i=l l_<i<j_<k 

k 
+ ~ P(aiajaz) . . . .  ( - -  1) k + l  

l_<i<j<z_<k 

X ~ P(aiaj. .-ak-1) �9 (5) 
l_<i<j<z..._<k-1 

Although these equations can be evaluated by numeri- 
cal procedures for any number ofloci and alleles at any 
frequency, obtaining the required sample size for many 
alleles at different frequencies in various loci is very 
impractical. Hernandez and Crossa (1993) developed a 
computer algorithm to evaluate these equations and 
thereby facilitate determination of the optimal sample 
size. The authors specified the assumptions underlying 
Eq. 5 as: (1) seeds are sampled regardless to the geno- 
type of the parents; (2) there are no associations among 
genes from different loci (linkage equilibrium); (3) if 
there are no associations between genes within individ- 
uals at any locus, then the required sample size is 
exactly half the sample size (n) given by Eq. 5; (4) if there 
is a perfect association between genes within individ- 
uals at any locus, then the required sample size equals 
the sample size (n) given by Eq. 5; and (5) if the degree of 
association between genes within individuals is un- 
known, then the required sample size is between n/2 
and n. 

However, if allele frequencies are unknown, a more 
specific equation for estimating an optimal sample size 
that will still retain at least one copy of each of k allelic 
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classes for a specified probabil i ty is required. A simpli- 
fication of the equat ion can be obtained by assuming 
that  k - 1 alleles occur at an identical low frequency of 
Po and that  the k th allele occurs at a frequency of  
1 - [ ( k -  1)Po]. Then, Eq. 4 can be reduced to the fol- 
lowing much simpler expression 

P(al  > 0 . . . . .  a k > 0) 

( ) ) = 1 - ( _  1)r_ 1 k - 1 (1 - rpo) n . (6) 
( r = l  r 

where r denotes the number  of terms in the summat ion  
(see Appendix A). 

By considering only the first term of Eq. 6 [i.e., 
( k -  1)(1 - P o ) " ] ,  log transforming, and solving for n, 
the resulting equat ion is 

n > [log(1 - P) - log(k - 1)]/[log(1 - Po)] (7) 

It can be shown, for this case, that  the other  terms of 
Eq. 6 are negligible (see Appendix B). This expression 
shows that  the sample size required to retain, with 
probabil i ty P, at least one copy of each of the k allelic 
classes at one locus depends on the number  and the 
frequency of  the alleles. A. H. D. Brown in Frankel  and 
Soule (1981) evaluated this formula only for the case of 
two alleles per locus [i.e., log(k - 1) = 0]. 

For  the case of m independent  loci and the same 
number  of  allelic classes (k) at each locus, Eq. 7 can be 
written as 

n > {log [1 - ( p ) l / m ]  _ _  log(k - l)}/log(1 - P0) (8) 

The formula used by C h a p m a n  (1984) resembles Eq. 8, 
but  the former considered only two alleles per locus. 

In  general, these formulas suggest that  the optimal 
sample size is much more  strongly affected by the 
frequency of  the rare alleles than it is by either number  
of  alleles or  number  of  loci. For  example, for loci with 
two, three, or four alleles, each at a frequency of  0.05 
(Po), 89, 102, and 110 individuals are required to retain 
at least one allele in each respective class at each of the 
10 loci with 909/o probabil i ty (Table 1); if 100 loci are 
involved, 45 addit ional  individuals are required in the 
sample. For  two, three, or four alleles, when the fre- 
quency of  a part icular  allele declines to 0.03 (P0) in each 
of 10 loci, 150, 172, and 186 individuals are required to 
retain at least one allele in each respective class at each 
of  the 10 loci with 909/0 probabil i ty (Table 1). Similarly, 
for 100 loci the respective sample size increases by 75 
individuals. Fo r  classes of loci with two, three, or four 
alleles, each at a frequency of 0.05 (Po), 134, 148, and 
156 individuals are required to retain at least one allele 
in each respective class at each of  the 50 loci, with 95~o 
probabil i ty (Table 2). If  150 loci are involved, 22 more  
individuals are required. To capture, with 90~-95~o  
probabili ty,  at least one allele at a 0.03 frequency in 

Table 1. Sample sizes required to achieve a 90~o probability of 
including at least one copy of alleles with Po of 0.05, 0.03, and 0.0i 
from each allele class for several alleles at each locus 

Number of Number of loci 
k alleles 1 2 5 10 50 100 150 

Po = 0.05 
2 45 58 75 89 120 134 142 
3 58 71 89 102 134 147 155 
4 66 79 97 110 142 155 163 

10 88 101 118 132 163 177 184 
15 96 109 127 140 172 185 193 

Po = 0.03 
2 76 97 127 150 202 225 238 
3 98 120 150 172 225 248 261 
4 112 134 163 186 238 261 274 

10 148 170 199 222 274 297 311 
15 162 184 214 236 289 312 325 

Po = 0.01 
2 229 295 385 454 613 682 722 
3 298 364 454 523 682 751 791 
4 338 405 494 563 723 791 832 

10 448 514 604 672 832 901 941 
15 492 558 648 716 876 945 985 

Table 2. Sample sizes required to achieve a 95~ probability of 
including at least one copy of alleles with Po of 0.05, 0.03, and 0.01 
from each allele class for several alleles at each locus 

Number of Number of loci 
k alleles 1 2 5 10 50 100 150 

Po = 0.05 
2 58 72 89 103 134 148 156 
3 72 85 103 116 148 161 169 
4 80 93 111 124 156 169 177 

10 101 115 132 146 177 191 198 
15 110 123 141 154 186 199 207 

Po = 0.03 
2 98 121 151 173 226 249 262 
3 121 143 173 196 249 271 285 
4 134 157 187 209 262 285 298 

10 170 193 223 245 298 321 334 
15 185 207 237 260 313 335 349 

Po = 0.01 
2 298 366 456 525 685 754 794 
3 367 435 525 594 754 823 863 
4 407 475 565 634 794 863 903 

10 517 584 675 744 903 972 1013 
15 561 628 719 787 947 1016 1057 

each allele class at each of 150 loci, sample sizes of 
238-349 individuals are required. For  preserving al- 
leles at a 0.01 frequency with 90~-95~o  probability,  the 
regenerating sample size should include between 722 
and 1057 plants. 

These results indicate that  sample sizes of  160-210 
plants are required to riaaintain alleles which occur at 
frequencies of 0.05 or higher in each of 150 locJi with a 
90-95~o probability. This sample size will restrict in- 
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breeding to less than 1~ regeneration (for two alleles 
per locus the rate of inbreeding is given by F = 1/2Ne, 
where Ne is the effective population size), and thereby 
avoids inbreeding depression. For most quantitative 
traits, alleles rarer than 0.05 would probably contri- 
bute little to the mean or the variance of the character 
in the population and so could not easily be measured 
or evaluated. Therefore, a 0.05 allelic frequency seems 
to be an appropriate level for calculating requisite 
sample sizes. 

The multinomial models used here allow the gener- 
alization of various equations to k rather than to two 
alleles. Although isozyme analysis in general can re- 
solve two or fewer alleles per locus, modern molecular 
markers techniques such as restriction fragment length 
polymorphism (RFLP) and random amplified poly- 
morphic DNA (RAPD) analyses frequently uncover 
greater numbers of alleles per locus. 

The probability of losing one or several alleles at a 
single locus when diploid individuals are sampled has 
been considered by Gregorius (1980), who compiled a 
table of the minimum sample sizes required to assure 
that all alleles for specified frequencies are included 
at a certain probability. When the allelic frequency 
decreases from 0.05 to 0.03, or from 0.02 to 0.01, the 
required sample size approximately doubles. 

A sample size of 90 individuals was suggested by 
Namkoong (1988) for an average loss of one allele at a 
frequency of 0.05 at any of 100 loci. Required size 
increases to 458 individuals when the allelic frequency 
drops to 0.01. 

Except for synthetics derived from inbred lines, the 
minimum frequency of alleles in the population will be 
unknown. And even in this case, the number of loci 
controlling a trait is unknown. However, the formulas 
derived above serve as general guidelines for the re- 
quired sample size for accession regeneration. 

In a non-ideal breeding population of size N not all 
of the individuals produce progeny. Only those pro- 
genitors that leave offspring influence the genetic con- 
stitution of the next generation and therefore contrib- 
ute to the effective size of the population (Ne). Ac- 
cordingly, the effective size of the population (Ne) is 
smaller than the total population size (Ne < N). How- 
ever, from a practical perspective Ne depends on: (1) 
the crossing system and (2) the manner that male and 
female gametes are sampled (Hallauer and Miranda 
1981). A practical procedure for regenerating a maize 
accession should control the male and female gametes. 
The number of male gametes is controlled through 
hand pollination (plant-to-plant crosses or chain 
crosses), whereas the number of females gametes is con- 
trolled by taking equal number of seeds from each pol- 
linated ear. In this case the effective population size for 
the next generation is twice the size of the original popu- 
lation (Ne = 2N) (Crossa 1989). 

Core subsets 

The ever increasing number and size of collections 
stored in germ plasm banks and the complexities of 
adequately managing and using them have generated 
considerable concern within the world plant germ 
plasm community. However, the formation of core 
subsets appear to offer opportunities for signifi- 
cant improvement in germ plasm management and 
utilization (Brown 1989b). The core subsets would 
provide managers of genetic resources and breeders 
with a manageable number of accessions for their 
work. 

The main purpose for defining core subsets is to 
ensure that plant germ plasm collections will be used in 
such a way that they provide efficient access to the 
entire range of genetic variation. This would facilitate 
the efficiency of preliminary germ plasm evaluations 
for needed traits. 

Core subsets comprise specific accessions from an 
existing collection and therefore do not constitute a 
separate collection per se. As such, they should be fully 
integrated with the "reserve subset" or non-core subset 
so that the collection is curated as an essential whole. 

Brown (1989a) considered four classes of alleles in a 
given germ plasm collection: (1) common, localized, (2) 
rare, localized, (3) common, widespread, and (4) rare, 
widespread. For the first three classes of alleles, Brown 
(1989a) studied the distribution of neutral alleles and 
obtained the expected number of alleles retained in a 
given size of the core subset. He recommended includ- 
ing 5-10~ of the total collection and at least 3000 
accessions per species. The last class consists of alleles 
that are always rare but that occur across most acces- 
sions of one collection. For the last two classes of 
alleles, each accession can be considered to be a ran- 
dom sample from the collection. 

Determining the optimal number of accessions 
for a core subset. Assuring that widespread, 
common, or rare alleles are captured 

We are concerned with the minimum number of acces- 
sions required to retain a large proportion of alleles 
that occur at low frequencies (less than 0.10) in most 
accessions of the collection (rare and widespread alle- 
les). For this case, the expected number of alleles (hA) in 
a sample of n accessions can be estimated as follows. 
Consider A alleles at a locus with frequencies of pl, P2, 
P3 . . . . .  Pj . . . . .  PA across all accessions. Let the event 
xj = 1, if the jt~ allele is included in a sample of n 
accessions, and xj = 0 if not. The probability that the jth 
allele is absent from the sample is P(xj = 0) = (1 - pj)n, 
and the probability of the j t h  allele occurring in the 



sample  is 

P(xj = 1) = 1 - P ( x j  = 0 )  = 1 - (1 - pj)" (9) 

Then,  let 

S = x I -~- x 2 --}- . . .  -3 t- x A (10) 

(S = ~ j =  1 x j, where j = 1,2 . . . . .  A) be the n u m b e r  of 
alleles per locus present  in the sample  of n accessions. 
The  expected value of xj is given by 

E ( x j )  = Z x j p ( x j ) :  (0)(1  - p j )n  -t- (1)[1 - ( 1  - pj)"] 
x j=0  

= 1 - (1 - p y .  (11) 

Thus,  the expected n u m b e r  of alleles (na) per locus in a 
sample  of n accessions is 

E(S) = n A = E xj -- '-- E ( x j )  
j j= 

A A 
= ~ [1 - (1 - p j ) n ]  = A - ~2 (1 - p j ) n  (12) 

j = l  j=l 

The expected n u m b e r  of alleles cap tured  in all loci is 
the sum of nA for each locus (Brown 1989a) 

Some numerical  examples  employing  Eq. 12 are 
presented in Table  3. When  four of five alleles have 
frequencies of 0.05 and one has a frequency of 0.80, a 
subset  of 25 accessions would be expected to include 
four out  of five alleles. When  two of three alleles have 
frequencies of 0.05 and one has a frequency of 0.90, a 
subset of  15 accessions would  retain, on the average,  
two of the three original alleles. Fo r  rare alleles wide- 
spread th roughou t  the collection and having the range 
of altelic frequencies considered here, mos t  alleles with 
frequencies of 0.03 and  0.05 per locus will be included in 

T a b l e  3. Number of accessions (n) required for core subset such 
that n A alleles per locus are retained for loci with three, four, and 
five alleles at different frequencies 

AIMic frequency 
Pl P2 P3 P4 P5 n n a 

0.0001 0.0001 0.9998 2000 1 
0.01 0.01 0.98 70 2 
0.01 0.01 0.98 300 3 
0.03 0.03 0.94 90 3 
0.05 0.05 0.90 15 2 

0.0001 0.0001 0.0001 0.9997 4000 2 
0.01 0.01 0.01 0.97 100 3 
0.01 0.01 0.01 0.97 350 4 
0.03 0.03 0.03 0.91 100 4 
0.05 0.05 0.05 0.85 25 3 

0.0001 0.0001 0.0001 0.0001 0.9996 6000 3 
0.01 0.01 0.01 0.01 0.96 150 4 
0.01 0.01 0.01 0.01 0.96 400 5 
0.03 0.03 0.03 0.03 0.88 100 5 
0.05 0.05 0.05 0.05 0.80 25 4 
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a subset  of 25-100 accessions. These results apply  only 
to alleles tha t  are widespread th roughou t  the collec- 
tion. 

In  general, a useful s trategy for forming core sub- 
sets in maize race collections would be to use a strat-  
ified sampling strategy. For  example,  subdividing the 
total  n u m b e r  of accessions into non-over lapp ing  
groups  based on racial complex and /or  ecogeographi-  
cal criteria. Then, within each racial complex select 
25-100 accessions. A subset of this size will preserve, on 
the average, alleles with frequencies higher than  0.03 in 
each race collection. If possible, races represented by 
fewer accessions in the collection should be collected 
more  thoroughly  to sample  alleles with frequencies 
higher than  0.03. Within  each race complex  accessions 
can be grouped  by region or elevation. 

Accessions should be placed in mul t i locat ional  rep- 
licated trials, and several morpholog ica l  and agro-  
nomic  at t r ibutes  should be measured.  Classification 
techniques such as cluster analysis and ordinat ion  
methods  such as principal  componen t s  analysis have 
proven  to be.useful for assessing genetic diversity and 
therefore could help the cura tor  identify similar acces- 
sions within racial or  ecogeographical  subgroups  of the 
core. 

Acknowledgement. The authors thanks Drs. B. Johnson, K. R. 
Lamkey, and E.E. Roos for their helpful comments on the 
manuscript. 

A p p e n d i x  A 

The term Y~ik= 1 P(ai) of Eq. 4 includes k - 1 sub-terms without 
the allele a k and one sub-term with a k. The probability that any 
of the k - 1 alleles will be absent from the sample is (1 - Po)", and 
the probability that the k th allele be absent from the sample is 
[(k - 1)p0]". Thus, the term ~ =  1 P(ai) can be written as 

(k - 1)(1 - Po)" + [(k - 1)po]" 

( )  k sub- The term ~]l<i<j_<kP(alaj) of Eq. 4 includes k 1 
- 1 

terms that contain the allele a k, each with a probability of 

[(k - 2)p0]n, and ( k  2 1) sub-terms that do not include the 

allele ak, each with a probability of ( 1 -  2po)". Therefore, the 
k term Zl  _< i < 1 s k P(aiaj) can be summarized as follows 

(k  1 1) [ ( k -  2)P0]n + ( k  2 1)(1 -- 2p0)n 

m k ( ) Theter ~21<i<j<z_<kP(alajaz)ofEq. 4comprises k 2 1  

sub-terms that contain the allele a k, each with a probability 

[ ( k - 3 ) p o ] " , a n d ( k - l )  3 sub-terms that do not include the 

allele ak, each with a probability of (1 -3po)  n. Then, the 
52~ < i < j <,_< k P(aiaj az) term is reduced to 

( k  2 1)  [ ( k -  3)po]n + ( k  3 1)(1 -- 3po)n 
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So, in general, the r th term of Eq. 4 can be expressed as 
follows 

( k 2  I )  [(k - r)Po]n q- (k r 1)(1 -- rpo) n 

Therefore, Eq. 4 is reduced to 

P(a I > 0  . . . . .  ak>O ) 

= 1 - -  ( -  1)r- 1 [ ( : - -  I )  [(k - r)po]" 

Since the term [(k - r ) P o ]  n is so small that is negligible, 

P(al > 0 . . . . .  ak > 0) 

= l - { ~ : ' - l ) r - l ( k : l ) ( 1 - r p o )  n} 

Appendix B 

Substitution of the value of n from Eq. 7 into any of the other 
summation term of Eq. 6 it can prove that the value of that term 
is so small as to be negligible. The r th term of the summation can 
be written as 

( k  r 1 ) ( 1 -  rpo)" (for r_> 2), 

where a = n = [log(1 - P ) -  log(k - 1)I/log(1 - Po) from Eq. 
7. That is, (1 - rpo)" = exp[{(log(1 - P) - log(k - 1))/log(1 - 
Po)} {log(1 - rpo)}]. Because { [log(1 - P) - log(k - 1)]/ 
log(1 -Po)}  {log(1 - rPo)}  ] is negative, the maximum value of 
(1 - rpo)"  occurs when the expression e x p [ { ( l o g ( 1 - P ) -  
log(k - 1))/log(1 -po)}{log(1 - rPo)}]  = 1. Therefore, mini- 
mum values of Po, k, and r that make the quantity {[log(1 - 
P) - log(k - 1)I/log(1 -Po)} {log(1 - rPo)} approach 0 are re- 
quired. When Po ~0 ,  the limit of l o g ( 1 -  rpo)/ log(1-Po) ap- 
proaches r. Then 

(1 -- rpo)" = exp{[log(1 - P) - log(k - 1)](r)} 

= exp [(r)log{(1 - p)/(k - 1)}] 

= [(1 - P ) / ( k -  1)] r 

which is minimized when r = 2 and k = 3. Therefore, the maxi- 
mum value of(1 - rpo)" is at [(1 - P ) / 2 ]  2 and for P =0.9 and 
0.95, ( 1 - r P o ) a =  0.0025 and 0.000625, respectively. These are 
the maximum possible values of the second summation term of 
Eq. 6. 
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